Focusing polychromatic light through scattering media
نویسندگان
چکیده
We demonstrate enhanced focusing of polychromatic light through strongly scattering media. The experimental results validate a theoretical relationship among source bandwidth, sample bandwidth, and initial contrast of a far-field speckle. For various combinations of source bandwidth and sample bandwidth, we optimize far-field focal intensity enhancement using a MEMS spatial light modulator to modulate the source beam prior to its propagation through the medium. We achieve focus optimization using a sequential coordinate descent algorithm and Hadamard basis functions to control the spatial phase of the modulator. Enhancement, the ratio of optimized focal intensity to initial speckle mean intensity, is shown to vary monotonically with initial contrast.
منابع مشابه
Focusing polychromatic light through strongly scattering media.
We demonstrate feedback-optimized focusing of spatially coherent polychromatic light after transmission through strongly scattering media, and describe the relationship between optimized focus intensity and initial far-field speckle contrast. Optimization is performed using a MEMS spatial light modulator with camera-based or spectrometer-based feedback. We observe that the spectral bandwidth of...
متن کاملFocusing through dynamic scattering media.
We demonstrate steady-state focusing of coherent light through dynamic scattering media. The phase of an incident beam is controlled both spatially and temporally using a reflective, 1020-segment MEMS spatial light modulator, using a coordinate descent optimization technique. We achieve focal intensity enhancement of between 5 and 400 for dynamic media with speckle decorrelation time constants ...
متن کاملShaping and control of polychromatic light in nonlinear photonic lattices.
Focus Serial: Frontiers of Nonlinear Optics We overview our recent results on spatio-spectral control, diffraction management, broadband switching, and self-trapping of polychromatic light in periodic photonic lattices in the form of rainbow gap solitons, polychromatic surface waves, and multigap color breathers. We show that an i...
متن کاملFocusing on moving targets through scattering samples.
Focusing light through scattering media has been a longstanding goal of biomedical optics. While wavefront shaping and optical time-reversal techniques can in principle be used to focus light across scattering media, achieving this within a scattering medium with a noninvasive and efficient reference beacon, or guide star, remains an important challenge. Here, we show optical time-reversal focu...
متن کاملFocusing coherent light through opaque strongly scattering media.
We report focusing of coherent light through opaque scattering materials by control of the incident wavefront. The multiply scattered light forms a focus with a brightness that is up to a factor of 1000 higher than the brightness of the normal diffuse transmission.
متن کامل